Anomaly Detection in Noisy Multi and Hyper Spectral Images of Urban Environments

نویسنده

  • D. G. Blumberg
چکیده

The recent surge in remotely sensed imagery with multi to hyper spectral cubes has made it very difficult to detect features because of the sheer volume of data. In a sense it is locating the needle in the haystack which in urban areas is extremely difficult unless we have specific knowledge of the anomaly spectrum. Adding noise and atmospheric masking makes it even more complex a problem. In this paper we will present an approach by which we base our study on a novel spectral-segmentation algorithm for multi-or hyper spectral images and consider how to detect multi-pixel environmental anomalous objects in the urban space. In particular, we have developed several filters to compensate for noise which may be present in the initial cube. We also assume no a priori knowledge on the objects other than the fact that they are different from the background and are regularly shaped. We show that for speckle noise, a modification of our morphology technique allows us to detect features without correcting for atmospheric influences nor producing an enhanced false alarm result. We will show several results from urban environs in Israel and the USA using a variety of sensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Spectral-Spatial Anomaly Detection

Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...

متن کامل

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Detection of construction debris dumping sites using Landsat images (Case study: Shahriar and Mallard districts)

Natural phenomena and human activities are always changing the earth and Knowing about changad information of the earth’s surface is becoming more and more important in monitoring the local, regional and global resources and environments. The large collection of past and present remote sensing images made it possible to analyze spatio-temporal pattern of environmental elements and impacts of hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005